
1. (a) State and prove Cauchy’s integral
formula.

(b) State and prove Liouville’s theorem.
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2. (a) Prove that the function sin
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z
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be expanded in a series of the type
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(b) State and prove Argument Principle.

3. (a) Prove that all the roots of
z7 – 5z3 + 12 = 0 lie between the circles
| z | = 1 and | z | = 2.

(b) State and prove Maximum modulus
Principle.

4. (a) (i) Find the singularities of
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(ii) Find the residue of 
3

2 1
z

z 
 at z = .
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(b) Prove that :

 2 20
cos 0

2
mamx dx e m

aa x
 

 


using method of contour integration.

5. (a) (i) Write all the critical points and fixed
points of bilinear transformation

 0az bw ad bc
cz d


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 .

(ii) Find the bilinear transformation
which maps the points z1 = 2, z2 = i
and z3 = –2 into the points w1 = 2,
w2 = i and w3 = –1.

(b) Let f (z) be an analytic function of z in a
region D of the z-plane and f (z)  0
inside D. Then prove that the mapping
w = f (z) is conformal at the points of D.

6. (a) State and prove Hurwitz theorem.
(b) Explain any two of the following :

(i) Normal Set and Normal Family
(ii) Totally Bounded Set
(iii) Equicontinuity

7. (a) Find residue of z  (gamma z) at the
poles.
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(b) Prove that log z  is a convex function
on (0, ).

8. (a) State and prove Runge’s theorem.

(b) Prove that   1
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9. (a) State and prove Schwartz’s Reflection
principle.

(b) Let f be an analytic function on a region
containing –B (0, r) and suppose that a1,
a2, .... an are the zeros of f in –B (0, r)
repeated according to multiplicity. If
f (0)  0, then prove that
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10. (a) State and prove Harnack’s inequality.

(b) State and prove Schottky’s theorem.
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